+7(996)961-96-66
+7(964)869-96-66
+7(996)961-96-66
Заказать помощь

Реферат на тему Задача определения оптимального плана производства. Области применения сетевого планирования и управления

ОПИСАНИЕ РАБОТЫ:

Предмет:
МЕТОДЫ МОДЕЛИРОВАНИЯ И ПРОГНОЗИРОВАНИЯ ЭКОНОМИКИ
Тема:
Задача определения оптимального плана производства. Области применения сетевого планирования и управления
Тип:
Реферат
Объем:
20 с.
Дата:
02.02.2015
Идентификатор:
idr_1909__0006866
ЦЕНА:
300 руб.

240
руб.
Внимание!!!
Ниже представлен фрагмент данной работы для ознакомления.
Вы можете купить данную работу прямо сейчас!
Просто нажмите кнопку "Купить" справа.

Оплата онлайн возможна с Яндекс.Кошелька, с банковской карты или со счета мобильного телефона (выберите, пожалуйста).
ЕСЛИ такие варианты Вам не удобны - Отправьте нам запрос данной работы, указав свой электронный адрес.
Мы оперативно ответим и предложим Вам более 20 способов оплаты.
Все подробности можно будет обсудить по электронной почте, или в Viber, WhatsApp и т.п.
 

Задача определения оптимального плана производства. Области применения сетевого планирования и управления - работа из нашего списка "ГОТОВЫЕ РАБОТЫ". Мы помогли с ее выполнением и она была сдана на Отлично! Работа абсолютно эксклюзивная, нигде в Интернете не засвечена и Вашим преподавателям точно не знакома! Если Вы ищете уникальную, грамотно выполненную курсовую работу, реферат, реферат и т.п. - Вы можете получить их на нашем ресурсе.
Вы можете заказать реферат Задача определения оптимального плана производства. Области применения сетевого планирования и управления у нас, написав на адрес ready@referatshop.ru.
Обращаем ваше внимание на то, что скачать реферат Задача определения оптимального плана производства. Области применения сетевого планирования и управления по предмету МЕТОДЫ МОДЕЛИРОВАНИЯ И ПРОГНОЗИРОВАНИЯ ЭКОНОМИКИ с сайта нельзя! Здесь представлено лишь несколько первых страниц и содержание этой эксклюзивной работы - для ознакомления. Если Вы хотите получить реферат Задача определения оптимального плана производства. Области применения сетевого планирования и управления (предмет - МЕТОДЫ МОДЕЛИРОВАНИЯ И ПРОГНОЗИРОВАНИЯ ЭКОНОМИКИ) - пишите.

Фрагмент работы:





Тема: "Задача определения оптимального плана производства. Области применения сетевого планирования и управления."

Содержание


Введение 3
1. Задача определения оптимального плана производства 4
2. Области применения сетевого планирования и управления 16
Заключение 19
Список используемой литературы 20
Введение

Впервые математические модели оптимального плана производства были использованы для решения практической задачи в 30-х годах в Великобритании при создании системы противовоздушной обороны. Для разработки данной системы были привлечены ученые различных специальностей. Система создавалась в условиях неопределенности относительно возможных действий противника, поэтому исследования проводились на адекватных математических моделях. В это время впервые был применен термин: «операционное исследование», подразумевающий исследования военной операции. В последующие годы операционные исследования или исследования операций развиваются как наука, результаты которой применяются для выбора оптимальных решений при управлении реальными процессами и системами.
Решения человек принимал всегда и во всех сферах своей деятельности. Раньше хотели, чтобы принимаемые решения всегда были правильными. Теперь принято говорить, что решения должны быть оптимальными. Чем сложнее объект управления, тем труднее принять решение, и, следовательно, тем легче допустить ошибку. Вопросам принятия решений на основе применения ЭВМ и математических моделей посвящена новая наука «Исследование операций», приобретающая в последние годы все более обширное поле приложений. Эта наука сравнительно молодая, ее границы и содержание нельзя считать четко определенными.
Предмет под названием «Исследование операций ЭММ» входит в программу элитарных вузов, но не всегда в этот термин вкладывается одно и то же содержание. Некоторые ученые под «исследованием операций» понимают, главным образом, математические методы оптимизации, такие как линейные, нелинейные, динамическое программирование.

1. Задача определения оптимального плана производства

Процесс моделирования оптимального плана производства, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Рассмотрим общую схему процесса моделирования, состоящую из четырех этапов.
Пусть имеется некоторый объект, который мы хотим исследовать методом моделирования – это оптимальный план производства. На первом этапе мы конструируем (или находим в реальном мире) другой объект – модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.
На втором этапе процесса моделирования модель оптимального плана производства выступает как самостоятельный объект исследования. Например, одну из форм такого исследования составляет проведение модельных экспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее «поведении». Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели. Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели (другими словами, признакам адекватности). На четвертом этапе осуществляются практическая проверка полученных с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвращаемся к проблематике объекта-оригинала.
Моделирование оптимального плана производства представляет собой циклический процесс, т. е. за первым четырехэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможности самосовершенствования. Перейдем теперь непосредственно к процессу экономико-математического моделирования, т. е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования оптимального плана производства, выделив следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно.
Постановка экономической проблемы и ее качественный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.
Построение математической модели. Это этап формализации экономической проблемы, т. е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и